Category Archives: Teknik Sipil

Daftar Software Teknik Sipil Gratis

Free/Open Source Software

Finite Element Analysis

  1. ElmerFEM (WebsiteSourceforge) – Windows
    Elmer is an open source multiphysical simulation software mainly developed by CSC – IT Center for Science (CSC).
  2. CALCULIX (Website) – Windows, Linux, Irix
    A Free Software Three-Dimensional Structural Finite Element Program
  3. Lisa FEA (Website) – Windows
    LISA is a user-friendly finite element analysis package for Windows with an integrated modeler, multi-threaded solver and graphical post-processor. Free to use up to 1300 node limit.
  4. Mecway FEA (Website) – Windows
    Mecway is a comprehensive user friendly finite element analysis package for Windows with a focus on mechanical and thermal simulation such as stress analysis, vibration and heat flow.  This software is done based on Lisa FEA with much more feature. It’s free to use up to 1000 node limit.
  5. Z88 (Website) – Windows, Linux, Mac
    – Z88Aurora (pre-&post processing) is a free finite element software package for static calculation in mechanical engineering. Beside linear static analysis you can use it for large displacement analysis, stady state thermal analysis and natural frequency analysis.
    – Z88 14.0 (post-processing only) is a fast, powerful and compact Finite Elements Analysis program especially designed for PCs running Windows Vista/7, LINUX, Mac OS X and large computers with UNIX.
  6. OpenSEES (Website) – Windows, Linux (using Wine)
    OpenSees, a software framework for developing applications to simulate the performance of structural and geotechnical systems subjected to earthquakes
  7. FELyX (Website, Sourceforge) – Source only and last update in 2006
    FELYX is an object oriented FE/FEM code written in C++. It provides the most common elements for structural analysis, bandwidth reduction, a fast skyline solver, some iterative solvers and an interface to the commercial FEA package ANSYS.
  8. Felt (Website) – Windows, Linux
    The current version of FElt knows how to solve linear static and dynamic structural and thermal analysis problems; it can also do modal and spectral analysis for dynamic problems. FElt’s element library currently contains fourteen elements.
  9. UNA – Finite Element Analysis Program (Website) – Windows
    UNA is a finite element program for static and dynamic structural analysis. This software has the solver only without pre/post processing.
  10. SLFFEA (Website, Sourceforge) –  Windows, Linux
    SLFFEA stands for San Le’s Free Finite Element Analysis. It is a package of scientific software and graphical user interfaces for use in finite element analysis.
  11. VisualFEA (Website) – Windows, Mac
    VisualFEA is an innovative program for finite element analysis, which is an advanced technique to solve and analyze physical problems arising in many fields of science and engineering
  12. Range (Website) – Windows
    Finite element analysis for structural and heat transfer. Also can be used for CFD. This demo software is limited to 1000 nodes for a month.
  13. Analysis for Windows (Website) – Windows
    Very powerful Finite Element Analysis package for 2D and 3D constructions (frames and trusses)
  14. Frame3DD (Website) – Windows, Linux, Mac
    Frame3DD is free open-source software for static and dynamic structural analysis of 2D and 3D frames and trusses with elastic and geometric stiffness. It computes the static deflections, reactions, internal element forces, natural frequencies, mode shapes and modal participation factors of two- and three- dimensional elastic structures using direct stiffness and mass assembly.
  15. Atena (Website) – Windows
    Software for non-linear analysis of reinforced concrete and concrete structures. Demo-mode program is limiting node.
  16. FEAP (Website) – Windows, Linux, Mac
    FEAP is a general purpose finite element analysis program which is designed for research and educational use
  17. M3d (Website) – Windows
    M3d Free Finite Element Software
  18. Felipe (Website) – Windows
    FELIPE is a self-standing finite element software package, running under Windows, developed to support students of mathematics or engineering in understanding, appreciating and using the finite element method. Because it contains a powerful pre-processor and post-processor, as well as source code for the “main engines”, it also enables more experienced finite element practitioners to develop f.e. analyses of their individual problems, for research or commercial purposes.
  19. Mechanical programs (Website) – Windows

Structural Analysis

  1. Atlas (Website, Review & Download) – Windows
    Atlas computes the resulting moments and reaction forces for a given beam with loads applied to it (single as well as distributed), using Cross’ method.
  2. IDARC 2D (Website) – Windows
    A Computer Program for Seismic Inelastic Structural Analysis
  3. IDARC-Bridge (Website) – Solaris
    A Program for Three-Dimensional Nonlinear Inelastic Analysis of Bridges
  4. Structures Software Site (Website) – Windows
    – BDSPOST BDS Post-Processing Program: The Shear Modification of Skewed Girders routine magnifies the shear for skewed concrete box girders using the method outlined in Caltrans Bridge Design Aids 5-31
    – BRGABUT Bridge Abutment Design: BRGABUT may be used to perform analysis of cantilevered concrete seat type bridge abutments.
    – CONSEC Concrete Section Analysis: Program CONSEC may be used to perform concrete section analysis of reinforced concrete members with or without embedded steel shapes.
    – CONVERT Metric Conversion Utility: Convert may be used to convert parameters between English and Metric units.
    – ELEV Elevation Calculation: Elev may be used to calculate elevations from vertical curve and superelevation information.
    – PSBEAM Prestressed Concrete Beam: Psbeam may be used to design or review prestressed concrete beams with either pretensioning or post-tensioning reinforcement
    – REBEAM Reinforced Concrete Beam: Rebeam may be used to design or review a reinforced concrete beam section for shear and/or flexure in accordance with any American or Canadian concrete code. Design criteria include ACI-318, AASHTO, AREMA, AASHTO LRFD, CSA A23.3 or CAN/CSA-S6.
    – RETAIN Retaining Wall Design: Retain may be used to design or review cantilevered concrete retaining walls and bridge abutments with either spread footing or pile foundations
  5. SAP2000 Students Version (4Shared) – Windows
    SAP 2000 7.4 Student Version is an educational version of SAP, fully functional, but with a node limit. State-of-the-art 3D Finite Element  Technology for Structural Engineers. SAP2000 represents the state-of-the-art in three dimensional  finite element technology for structural engineering.
  6. Response-2000 (Website) – Windows
    Response-2000 is an easy to use sectional analysis program that will calculate the strength and ductility of a reinforced concrete cross-section subjected to shear, moment, and axial load.
  7. Triax-2000 (Website) – Windows
    Triax-2000 is an easy to use analysis program that will calculate the load-deformation relationship for a uniform block of reinforced concrete in three dimensions
  8. Membrane-2000 (Website) – Windows
    Membrane-2000 is an easy to use analysis program that will calculate the load-deformation relationship for a uniform panel of reinforced concrete subjected to in-plane shear loading.
  9. Shell-2000 (Website) – Windows
    Shell-2000 is an easy to use analysis program that will calculate the load-deformation relationship for a general plate or shell subjected to any combination of the 8 loads that are possible for such an element.
  10. Kurvatur Momen (Website) – Windows
    Simple software to analysis the curvature-moment of beam section. I made this software when working in Laboratory of Structural Engineering.
  11. CalSAP (Website) – Windows
    Computer Assisted Learning of Structural Analysis Procedures


  1. Java-Powered Simulation for Earthquake Engineering (Website) – All Modern Browser
    This Virtual Laboratory (VL) illustrates three important concepts in Earthquake Engineering; response spectrum analysis of high-rise buildings, design spectrum, and force reduction factor.


  1. GEOTEC Office (Main WebsiteMirror) – Windows
    GEOTEC Office is a package for geotechnical and design engineering. The package contains the following programs and tools:
    – ELPLA: Analyzing footings, rafts, piled rafts, pile groups and foundation groups
    – BOHR: Drawing borehole logging of soil layers by different symbols according to the German specification code DIN 4023
    – TIEF: Analyzing single piles, pile walls, simple problems of pile groups and rigid piled rafts
    – Geo Tools: Analyzing different problems in geotechnical engineering
    – Self-Adaptive Mesh Wizard: Generating finite element mesh with better element / node distributions
    – GEOTEC-Text: A simple word processing program for editing GEOTEC Office output.

Water Resource

  1. FishXing (Website) – Windows
    This software is intended to assist engineers, hydrologists, and fish biologists in the evaluation and design of culverts for fish passage
  2. The Hydrologic Engineering Center (Website) – Windows
    HEC-RAS: HEC-RAS allows you to perform one-dimensional steady flow, unsteady flow, sediment transport/mobile bed computations, and water temperature modeling
  3. WinXSPRO (Website) – Windows
    WinXSPRO is a software package designed to analyze stream channel cross section data for geometric, hydraulic, and sediment transport parameters. WinXSPRO was specifically developed for use in high-gradient streams (gradient > 0.01) and supports four alternative resistance equations for computing boundary roughness and resistance to flow.
  4. Storm Water Management Model, SWMM (Website) – Windows
    EPA’s Storm Water Management Model (SWMM) is used throughout the world for planning, analysis and design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban areas. SWMM is a dynamic hydrology-hydraulic water quality simulation model.
  5. EPANET (Website, EPA) – Windows
    EPANET is a public domain hydraulic analysis package for water supply networks


  1. Scilab (Website) – Windows, Linux
    Scilab is a free, open source software for numerical computation  in engineering and scientific applications (an alternative to Matlab)
  2. FreeFem++ (Website) – Windows, Linux, Mac
    FreeFem++ is a partial differential equation solver. It has its own language. freefem scripts can solve multiphysics non linear systems in 2D and 3D.
  3. GNU Octave (Website, Sourceforge) – Windows, Linux
    GNU Octave is a high-level interpreted language, primarily intended for numerical computations. It provides capabilities for the numerical solution of linear and nonlinear problems, and for performing other numerical experiments. It also provides extensive graphics capabilities for data visualization and manipulation.
  4. Axiom (Website) – Linux, Windows
    Axiom is a general purpose Computer Algebra system. It is useful for research and development of mathematical algorithms. It defines a strongly typed, mathematically correct type hierarchy. It has a programming language and a built-in compiler.
  5. Sagemath (Website) – Windows, Linux, Mac
    Sage is a free open-source mathematics software system licensed under the GPL. It builds on top of many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more.


  1. Qblade (Website, Sourceforge) – Windows, Linux
    Qblade is an open source wind turbine calculation software, distributed under the GPL. The software is seamlessly integrated into XFOIL, an airfoil design and analysis tool. The motivation for this was to create a one solution software for the design and aerodynamical computation of wind turbine blades
  2. XFOIL (Website) – Windows, Unix
    XFOIL is an interactive program for the design and analysis of subsonic isolated airfoils.

Programming & Plot

  1. Matplotlib (Website) – Windows, Linux
    matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms.
  2. GNU Plot (Website) – Windows, Linux, Mac, VMS
    Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS, and many other platforms. It was originally created to allow scientists and students to visualize mathematical functions and data interactively, but has grown to support many non-interactive uses such as web scripting.
  3. Getfem++ (Website)
    GetFEM++ is basically a generic C++ finite element library which aims to offer the widest range of finite element methods and elementary matrix computations for the approximation of linear or non-linear problems, possibly in hybrid form and possibly coupled.
  4. libMesh (Website, Sourceforge)
    The libMesh library provides a framework for the numerical simulation of partial differential equations using arbitrary unstructured discretizations on serial and parallel platforms
  5. Feel++ (Website)
    Feel++ is a C++ library for partial differential equation solves using generalized Galerkin methods such as the finite element method, the h/p finite element method, the spectral element method or the reduced basis method.
  6. MOOSE Framework (Website) – Linux
    The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite-element, multiphysics framework primarily developed by Idaho National Laboratory. It provides a high-level interface to some of the most sophisticated nonlinear solver technology on the planet.

Commercial Software


  1. CivilTechSoftware (Website) – Windows
    – AllPile: Pile vertical, lateral, group, settlement, and negative friction analysis
    – Liquefy Pro: Earthquake-induced liquefaction and settlement analysis
    – SHORING Suite: Shoring wall design and analysis
    – EarthPres: Earth pressure analysis (active and passive pressure)
    – Surcharge: Lateral pressure due to surcharge load
    – SuperLog: Boring, test pit, and well drawing/reporting
    – Spectra: Graphical presentation for seismic spectra
    – Heave: Stability analysis for vertical cut

Water Resources

  1. PipeSolver (Website) – Windows
    PipeSolver is a software tool for computing the fluid flow in a pipe network, using the Hardy-Cross method.

Civil Engineering Toolbox: Software untuk Engineer Sipil

Perkenalkan software buatanku: Civil Engineering Toolbox.

civil-engineering-toolbox is collection of small programs of civil engineering that I built to help me to solve small to medium and common problems when designing something. When I try to create programs for practical use, sometimes I will add programs that is pure-theory (mathematics) when I’m interested on it.

It is web based application that can be opened in your own browser (offline) or can be accessed from other computer if you are connected to LAN (Local Area Network). This software can be used as a problem-solver, reminder (through the shown formula), or just to give quick estimation.

Proyek software ini mulai saya kerjakan sekitar akhir bulan Juli 2014. Sesuai dengan deskripsinya, aplikasi ini saya buat untuk membantu saya menyelesaikan desain skala kecil hingga besar. Beberapa aplikasi sudah bisa dipakai dengan fitur yang menurut saya sudah cukup. Karena kesibukan pekerjaan, akhir-akhir ini tidak banyak aplikasi yang bisa saya kembangkan.

Software ini saya buat dengan menggunakan bahasa Python dan banyak pustaka luar sehingga proses instalasinya terlihat sangat kompleks. Keuntungannya adalah saya bisa fokus hanya pada aplikasi sipilnya saja, sedangkan fungsi lainnya seperti fungsi numerik, web, pembuatan grafik, template, dan fungsi lain menggunakan pustaka yang sudah saya anggap stabil.

Screenshot aplikasi civil-engineering-toolbox
Screenshot aplikasi civil-engineering-toolbox

Meskipun baru ada beberapa aplikasi, harapan saya adalah aplikasi ini bisa semakin lengkap dan bisa digunakan oleh engineer sipil dalam menyelesaikan masalahnya. Kamu bisa mengunduh software ini, menggunakannya dengan bebas (gratis) dan menyebarluaskannya sesuai dengan lisensi BSD-3 clause.

Punya ide aplikasi atau kritik? Boleh disampaikan di blog ini atau di web Github tersebut di atas (harus registrasi terlebih dahulu) 😀

Tambahan Tekanan Lateral Tanah Aktual

Kalo kamu adalah mahasiswa atau engineer sipil, tentu di mata kuliah geoteknik kamu pernah dengar dengan penambahan beban lateral akibat adanya tambahan beban vertikal pada tanah. Contoh paling umum adalah kasus dinding penahan tanah. Selain didesain untuk menahan tekanan lateral akibat tanah, dinding juga harus didesain untuk menahan beban tambahan akibat jalan, kendaraan, orang, atau perumahan yang berada di atas tanah tersebut.

Persamaan Boussinesq tentang beban tambahan diturunkan dengan menggunakan analisis elastis, material tanah yang homogen, dan dianalisis untuk material di ruang yang tidak berbatas. Namun teori ini tidak menggunakan parameter tanah seperti tahanan geser, modulus elastisitas, atau friksi antara dinding dan tanah. Untuk penyederhanaan, banyak teori mengasumsikan koefisien Poisson’s ratio  untuk tanah diambil sebesar 0,5.

Eksperimen yang dilakukan oleh Spangler (1936) menghasilkan data tambahan lateral 2 kali lebih besar dibandingkan teori Boussinesq. Teng (1962) juga menyatakan bahwa analisis plastis akan menghasilkan tambahan 2 kali lebih besar dibandingkan analisis elastis. Teng menggunakan penyederhanaan rumus Boussinesq oleh Terzaghi yang dituangkan dalam bukunya Foundation Design dan manual software Civiltech.

Di bawah ini adalah persamaan Terzaghi (analisis elastis) untuk tambahan beban lateral akibat beban titik.

Beban titik pada dinding penahan tanah
Beban titik pada dinding penahan tanah

\displaystyle m <= 0.4 ; P_1 = \frac{0.28Q}{H^2}\frac{n^2}{(0.16+n^2)^3}
\displaystyle m > 0.4 ; P_1 = \frac{1.77Q}{H^2}\frac{m^2n^2}{(m^2+n^2)^3}

Lalu kapan persamaan dengan analisis elastis dan plastis digunakan? Banyak engineer menyarankan bahwa persamaan elastis digunakan untuk dinding penahan tanah yang sifatnya lentur (fleksibel). Sedangkan untuk dinding yang kaku (rigid) atau berdeformasi sangat kecil, tambahan beban lateral harus dikali dengan 2. Contoh dinding yang fleksibel adalah dinding yang terbuat dari pelat tipis yang cenderung berdeformasi cukup besar. Contoh dinding yang rigid adalah basement (ruang bawah tanah) suatu gedung.

Penjelasan paling sederhana adalah teori elastis dibuat dengan mengasumsikan bawha material tanah bersifat elastis, yang berarti tanah harus berdeformasi ketika diberi beban. Namun, ketika dinding penahan tanah bersifat sangat kaku, dinding mencegah tanah untuk berdeformasi secara bebas yang akhirnya menghasilkan beban tambahan. Efek ini disebut oleh Mindlin (1936) sebagai efek beban mirror.

Beberapa software mungkin belum mempertimbangkan efek beban mirror ini. Oleh karena itu perlu mengecek apakah software yang kita pakai sudah memperhitungkan pengaruh kekakuan dinding. Jika belum, kamu harus mengalikan persamaan-persamaan Terzaghi atau Boussinesq dengan faktor 2.

Foundation Design, Wayne C. Teng

Pencarian Artikel Teknik Sipil dengan Menggunakan Google Custom Search Engine

Saat kita ingin mencari bahan kuliah atau sekedar mencari topik dan artikel yang berhubungan dengan teknik sipil melalui Google, kadang kala kita tidak menginginkan hasil pencarian yang tidak relevan. Banyak produk yang berkaitan dengan teknik sipil ditampilkan bersama dengan hasil pencarian lainnya, dan hanya sedikit saja yang berkaitan erat dengan pencarian tersebut.

Saya mencoba Google Custom Search Engine untuk mengumpulkan website-website yang saya anggap memiliki konten yang baik dan relevan dengan bidang ketekniksipilan. Meskipun belum banyak, tapi saya akan terus menambah jumlah website yang akan tampil di hasil pencarian.

Untuk mengakses halaman google search engine ini silahkan membuka alamat URL awal halaman pencarian ternyata sangat panjang sehingga saya harus memendekkan alamatnya agar tidak terlalu memusingkan.

Tekuk dan Kapasitas Tekan pada Profil Baja

Tahun ini saya mengambil Tugas Akhir tentang desain bangunan baja yang berfungsi sebagai apartemen. Saya akhirnya membuka-buka kembali materi perkuliahan baja yang saya peroleh di semester 6. Saya menemukan sebuah grafik pembagian kolom yang dibedakan berdasarkan kapasitas tekuk yang bisa diterima. Kolom baja dibagi menjadi 3 bagian berdasarkan kategori tersebut: kolom pendek, kolom menengah, dan kolom langsing.

\displaystyle f_{cr}=\frac{\pi^{2}E}{(\frac{Lk}{r_{min}})^2}

\displaystyle \lambda_{c}=\frac{f_{y}}{f_{cr}}

Iseng-iseng saya membuat ulang grafik tersebut menggunakan Scilab.

//Nilai Tegangan Kritis (fcr)
// E = Modulus Elastisitas Bahan (MPa)
// L = Panjang bahan (mm)
// kc = nilai koefisien panjang tekuk
// rmin = jari-jari girasi minimum (mm)
function result = stl_fcr(E, L, kc, rmin)
    result = (%pi^2*E) ./ ((L*kc/rmin)^2)
    disp("Tegangan Kritis (Mpa)")
// E = Modulus Elastisitas Bahan (MPa)
// L = Panjang bahan (mm)
// kc = nilai koefisien panjang tekuk
// r = jari-jari girasi (mm)
// fy = kapasitas tekan baja (MPa)
function result = lambdaC(E, L, kc, r, fy)
    result = (L*kc)/(%pi*r)*sqrt(fy/E)
x = lambdaC(200000, 1500:200:6000, 1, 40, 400)
y = stl_fcr(200000, 1500:200:6000, 1, 40)
xtitle("fcr vs λ","λ","fcr (KN)")

Grafik di atas menunjukkan nilai tegangan kritis (fcr) baja dibandingkan dengan nilai kelangsingan non-dimensional kolom (λc). Data yang saya masukkan adalah data kolom dengan tinggi bervariasi dari 1500 mm hingga 6000 mm dengan kuat tekan 400 MPa serta jari-jari girasi 40 mm.

Terlihat bahwa kuat tekan kritis semakin besar jika kelangsingan kolom semakin kecil. Namun grafik di atas perlu dibatasi dengan kuat leleh baja yang digunakan yaitu sebesar 400 MPa, jadi grafik di atas tidak benar-benar bisa diperoleh 😀

Rumah Tahan Gempa

Indonesia berada di daerah yang rawan gempa. Daerah rawan gempa dimulai dari Aceh dan memanjang di sebelah barat Sumatra. Lalu banyak juga di Jawa, Sulawesi, dan Irian Jaya. Mungkin cuma Kalimantan yang jarang diguncang gempa.

Dari sekian banyak kejadian gempa besar yang terjadi, selalu saja ada korban jiwa. Korban jiwa bukan disebabkan oleh gempa itu sendiri. Gempa hanya mengakibatkan tanah bergerak dengan tidak menentu, akibatnya bangunan menerima beban gempa yang disalurkan dari tanah ke struktur bangunan. Namun, dari seluruh bangunan tersebut, banyak yang tidak kuat terhadap beban goncangan yang diberikan oleh gempa.

Eartquake didn’t kill people, the bad building did.

Kutipan kalimat di atas mungkin bisa menggambarkan bahwa bangunan yang buruklah yang menyebabkan banyak korban jiwa. Paling tidak ada 2 faktor yang menyebabkan bangunan tidak kuat menerima beban gempa: faktor pertama rumah memang tidak didesain untuk tahan gempa dan faktor kedua adalah rumah sudah didesain untuk tahan gempa, namun proses konstruksi menyebabkan bangunan berdiri dengan kekuatan yang tidak maksimal untuk menahan gempa.

Banyak ahli gempa dan ahli bangunan di Indonesia, banyak di antara mereka adalah dosen-dosen saya. Peraturan gempa dan bangunan juga sudah banyak dibuat untuk menjamin struktur bangunan yang tahan gempa. Namun, banyak juga para konsultan dan kontraktor nakal yang mungkin dengan sengaja atau ketidaktahuan mereka membuat bangunan yang sama sekali tidak tahan gempa.

Masyarakat umum yang sama sekali tidak berkecimpung dalam dunia sipil, mungkin tidak bisa banyak membantu dalam perencanaan dan konstruksi suatu bangunan. Banyak software yang bagus untuk bisa merencanakan struktur yang tahan gempa, misalnya Etabs, SAP2000, dll. Namun untuk menjalankan program seperti itu, dibutuhkan kemampuan sipil yang baik. Orang sipil saja mungkin tidak bisa menjalankan program seperti itu, apalagi masyarakat yang tidak tahu menahu ketekniksipilan 🙂

Untuk itu, dibutuhkan suatu media yang bisa membantu masyarakat luas untuk menjamin dan merencanakan bangunan tahan gempa. Media yang saya maksudkan adalah media baik berupa teks, gambar, program aplikasi, dan media lain yang bisa menjelaskan dengan mudah tata cara perencanaan bangunan tahan gempa.

Saya dan teman-teman saya di Teknik Sipil berencana untuk membentuk media tersebut agar nantinya bisa dipakai oleh banyak orang. Media ini akan memberikan gambaran bagaimana membangun rumah tahan gempa, yang tak kalah penting adalah aplikasi yang kami buat untuk mendesain bangunan tahan gempa namun bisa dibaca dengan mudah oleh masyarakat awam, serta tidak butuh pengetahuan khusus teknik sipil 🙂

Walaupun nilai beton saya jelek, nilai kuliah dinamika struktur saya sangat rendah, semoga bukan menjadi halangan dalam membuat sesuatu yang bermanfaat. Bagi saya pembelajaran berkesinambungan (meskipun kuliahnya sudah selesai) bisa menjadi kunci sukses untuk meraih sesuatu.

Desain Pelat Beton Satu Arah

Pelat beton bertulang bisa dibagi menjadi beberapa kategori, salah satunya adalah pelat beton satu arah. Disebut satu arah karena pelat ini lebih suka menyalurkan berat beban hanya pada balok-balok yang searah saja, yaitu balok-balok yang letaknya saling berdekatan, dibandingkan menyalurkan beban-beban pada balok yang letaknya berjauhan.

Desain pelat beton satu arah hampir sama dengan desain balok. Hanya saja, ada beberapa hal yang berbeda seperti menentukan tebal pelat.

Untuk perhitungan sederhananya, tebal pelat bisa ditentukan berdasarkan SNI beton 03-2847-2002. Dengan menggunakan SNI ini, kita tidak perlu lagi memperhitungakan lendutan yang terjadi pada pelat. Bisa saja kita tidak mengikuti aturan SNI dan menghitung sendiri tebal optimum yang dibutuhkan pelat, namun lendutan akibat beban pada pelat harus kita perhitungakan.

Tebal pelat bisa mengikuti aturan SNI seperti gambar di bawah ini.

Tebal pelat minimum tanpa memperhitungkan lendutan pada pelat

Setelah menghitung tebal pelat minimum, kita bisa menghitung kebutuhan tulangan perlu akibat tarik pada bagian bawah pelat. Penyederhanaan perhitungan bisa dilakukan dengan menghitung kebutuhan tulangan bawah saja (tidak memperhitungkan tulangan atas). Perhitungan tulangan perlu ini sama dengan perhitungan tulangan pada balok.

Langkah pertama adalah menghitung lengan momen untuk gaya tarik yang bekerja. Nilai d adalah jarak efektif antara serat terluar tekan beton dan titik berat tulangan tarik. Sedangkan nilai a adalah tebal beton yang membatasi daerah tekan beton (yang telah disederhanakan).

d = t - tebal Selimut Pelat - 0.5\times diameterTulangan

Karena jika menggunakan rumus jd di atas, tidak akan bisa menghasilkan sebuah nilai, maka untuk nilai awal, nilai jd bisa diambil sebesar
jd \approx 0.925\times d

Langkah kedua adalah menghitung nilai luas tulangan tarik perlu.
As = \frac{M_u}{f_y \times j_d\times\phi}

Langkah ketiga adalah mencari nilai a yang baru
a = \frac{As \times fy}{0.85\times fc\times b}

Langkah keempat adalah menghitung nilai momen nominal beton bertulang. Nilai jd dalam perhitungan di bawah ini adalah nilai yang telah menggunakan nilai a pada langkah ke tiga sebelumnya dan dihitung menggunakan rumus jd pada langkah satu, jadi bukan nilai jd estimasi.
Mn = As \times fy \times jd

Langkah kelima adalah mengecek apakah nilai Ø*Mn > Mu. Jika ternyata selisihnya sangat jauh, kita bisa menghitung kembali tulangan perlu pada langkah kedua tapi dengan menggunakan nilai jd yang baru. Cara ini bisa dilakukan dengan berulang-ulang sampai kita peroleh nilai Ø*Mn dan Mu yang hampir sama (cara ini digunakan untuk memperoleh nilai perhitungan yang hemat biaya).

Pelabuhan Tersibuk di Dunia

Tugas besar mata kuliah Rekayasa Prasarana dan Antar Moda mewajibkan kami mendesain pelabuhan dan bandar udara yang lokasinya ditetapkan dari prodi. Mendesain bandar udara sangat mengasyikkan. Perhitungan yang menarik dan tidak terlalu sulit membuat tugas besar desain bandar udara menjadi menyenangkan. Mendesain pelabuhan memerlukan perhitungan yang lebih sulit. Data yang digunakan lebih banyak dan harus bisa melakukan proyeksi barang untuk beberapa tahun mendatang.

Iseng-iseng saya mencari tau pelabuhan tersibuk di dunia dan menemukan daftar pada gambar berikut ini. Kategori pelabuhan tersibuk di sini adalah pelabuhan dengan trafik kontainer terbanyak pada tahun tersebut. Angka dalam gambar bawah ini adalah nilai dalam satuan ribu TEUs. Satu TEU bernilai 10,5 ton.

Bandingkan Indonesia  dan Singapura yang memiliki berpedaan nilai trafik kontainer setiap tahun. Kapan ya Indonesia punya pelabuhan yang besar dan bisa bermanfaat? Padahal luas Indonesia jelas jauh lebih besar daripada luas Singapura. Pelabuhan adalah jembatan transportasi barang yang paling ideal, murah, dan efektif. Bodohnya, Indonesia masih saja banyak menggunakan transportasi darat dan udara untuk pengangkutan barang. Kenapa barang kita tidak banyak beredar di luar negeri? Karena pelabuhan cuma Tanjung Priok saja yang bisa diandalkan dan itupun harus transit dulu di Singapura.

Tuntut ilmu sebanyak-banyaknya hingga dunia bisa kau taklukkan. Semoga suatu saat nanti, saya dan kamu bisa membuat pelabuhan yang bisa bersaing seperti itu nantinya 🙂